

Thoughts on Regulatory Requirements for CO₂ Injection

John Veil 202-488-2450; jveil@anl.gov Argonne National Laboratory

5th Annual Conference on Carbon Capture and Sequestration Alexandria, VA May 8-11, 2006

Topics

- How should CO₂ be classified?
- What should we call the process of injecting CO₂?
- If I were building a regulatory program, what elements would I want to include?
- If carbon geosequestration becomes a large-scale reality, how can state, federal, and international agencies scale up to handle the tens of thousands of new injection wells?

What Is CO₂?

- Different properties and impacts depending on time, place, and application
 - Natural substance with negative impact on atmosphere and climate
 - Important substance/raw material for plant growth
 - Valuable aid to hydrocarbon production
 - Commodity for trading
 - Waste
 - Component of popular beverages

What is CO₂ - continued

- The legal and perception implications seem to be driving the way in which different groups are trying to characterize CO₂
- We should not try to be too clever about naming and defining activities
 - The public is not stupid!
 - Attempts to disguise reality will not engender confidence
- Any regulatory scheme that emphasizes the negative properties of CO₂ will impede society's ability to manage/store/sequester carbon

What Should We Call the Process for Injecting CO₂ Underground?

- Traditionally called "sequestration"
- More recent efforts, concerned with perception and legal implications, have shifted to the term "storage"
 - How long will the material be stored?
 - Does society have any serious intention to recover or reclaim the CO₂?
- How does injection for enhanced recovery equate to storage?
- I prefer the term "sequestration" or more specifically, "geosequestration" or "geological sequestration"

What Are Some Concerns About CO₂ Geologic Sequestration?

- Regulators and injectors have limited experience with CO₂ geologic sequestration. Challenges include:
 - Lower fluid density = greater buoyancy of injectate
 - CO₂ reacts with water to form acid
 - What other constituents will be acceptable in the CO₂ injectate?
 - Geochemical changes
 - Could other chemicals be generated in the formations and in ground water as a result of CO₂ injection?
 - Damaging effects on cement and metal
 - Keeping CO₂ in desired formations for a sustained time
 - How much CO₂ escape is acceptable?

What Should Be Part of a Regulatory Program for CO₂ Geosequestration?

Siting

- Geology of injection formation and overlying formations
- Reservoir pressure profiles and other characteristics
- Appropriate area of review (well bores, faults, or vertical conduits)

Well construction

- Strength and metallurgy of pipes, casing
- Number of casing strings
- Type and vertical extent of cement
- Assurance of good cement bond

Operations

- Maximum injection pressure (above or below fracture pressure)
- Injection rate and volume
- Interactions between injectate, formations, and formation fluids
- Injection for sequestration/storage vs. use for EOR

Additional Regulatory Issues for Geosequestration

Monitoring

- Mechanical integrity testing
- How to monitor sequestration area

Closure

- Plugging and securing
- Long term issues
- Financial assurance

Legal/Policy

- Ownership interests in wells, pore spaces, and fluids
- Long-term maintenance and liability
- Length of time that CO₂ must be sequestered underground
- Credit for CO₂ capture/removal from atmosphere

How Can Society Manage the Massive Scope of the Proposed CO₂ Geologic Sequestration?

- If society is serious about the benefits of removing CO₂ from the atmosphere, it must accept some potential costs/risks of placing that CO₂ somewhere
 - Education of the public will be critical to manage the vast misinformation that will circulate
 - Start very soon with school children and let them become familiar with the issues, challenges, and options for solutions
 - The public will become more focused on global warming and carbon control following the May 24 release of the new Al Gore movie "An Inconvenient Truth"

Regulatory Program Development

- Build on existing UIC program
 - Consider whether CO₂ injection wells can fit appropriately into existing well classes or whether new well class is needed
 - Provide for guidance and training to regulators with expected delegation of permitting authority from federal to state agencies
- Need to start out slowly and carefully, but be prepared to institute mechanisms to allow rapid permitting of large number of similar projects
- Recognize that the types of controls and requirements used when evaluating and permitting the first 10, 50, or 100 injection wells will not be practical or appropriate for a later time when hundreds to thousands of wells will be permitted per year
 - Example: permitting of coal bed methane wells in Powder River Basin

